

FCH JU2 initiative:

PROJECT DEVELOPMENT ASSISTANCE FOR REGIONS

"Project Development Assistance for Cities and Regions 2020-2021": Ruse Project

Consultants: elementenergy and TREZORS

Ruse Team: Ruse Municipality | Association of Danube River Municipalities |

Ruse Municipal Transport | Bulgarian River Shipping J.S.Co

University of Ruse | BGH2A | Holding Zagora + newcomers

Presenter: Daria Vladikova (BGH2A) <u>d.vladikova@iees.bas.bg</u>

OBJECTIVES

■ Overall objective:

- To support Ruse Municipality to develop the first concept for regional hydrogen deployment for transport applications;
- To accumulate experience in the preparation of compatible projects for funding.

☐ Specific objectives:

- To establish a core group of stakeholders representing the entire value chain
- To develop business model of hydrogen eco system appropriate for Ruse combining:
 - Hydrogen bus fleet
 - Hydrogen push boat (local retro fit)
 - Local hydrogen production by electrolysis

Technical Design

Storage H2 = 690kg

Technical Design

360 kW, PEMFC, 90kW x 4 Modules

Compressor 500 bars

Storage H2 = 690 kg

Hydrogen storage on board 220kg H2/350 bars

Technical Design

P= 3,6 MWp

Compressor 500 bars

02

Storage H2 = 690 kg

Hydrogen storage on board 220kg H2/350 bars

Dispenser 350 bars (20 buses)

450kg H2

Costs (TCO): H2 Production

Selected conditions

Electrolysis					
Name	Unit				
Electrolyser efficiency	50	kWh/kg			
Lifetime	80 000*	Hours			
Electrolyser Installed Capacity	2423	kW			
Tap water consumption	16,8	liters/kg			
Working hours	16	hours/day			

^{*}Change of the stack

Capital Costs (CAPEX)							
Name	Value	Unit	%	Total (€)			
Electrolyzer	1100	€/kW	37%	2670000			
Hydrogen Storage	1000	€/kg	10%	691000			
Hydrogen Compressor	1500	€/kg	14%	1040000			
Refuelling Dispensers and Chillers	500000	€/unit	7%	500 000			
Photovoltaic Equipment	500	€/kW	25%	1820000			
Photovoltaic Installation	50	€/kW	3%	182000			
Civil Works	400	€/m²	3%	200000			
Grid Connection	100000	€	1%	100000			
Total		€	100%	7200000			
Annualised total		€/year		427410			

Costs (TCO): H2 Production

Annual Operational Costs (OPEX)					
Name	Value	Unit	%	Total	
Electrolyser	3%	% of CAPEX p.a.	10%	80 000	
Hydrogen Storage	1%	% of CAPEX p.a.	1%	6 910	
Hydrogen Compressor	3%	% of CAPEX p.a.	4%	31 000	
Refueling Dispensers and Chillers	3%	% of CAPEX p.a.	2%	15 000	
Photovoltaics Maintenance	10	€/kWp	4%	36 400	
Grid Electricity Costs	551000	€/year	<mark>68%</mark>	551 000	
Labour Refuelling Station	€ 15000	per person	11%	90 000	
Total 100% 810 00					

Costs (TCO): H2 Production

Project	Electrolyzer capacity [MW]	H2 production [kg/day]	Levelized cost of hydrogen [€/kg]
Ruse	2400	690	5,37
Sofia	3899	1215	4,13

Costs (TCO): Pusher Retrofit

→ H₂ → Electricity

PORT

BR100A5 I (3) Z ICE Pusher

Hydrogen storage on board 220kg H2/350 bars

Costs (TCO): Pusher Retrofit CAPEX

Boat technical expertise		€ 50 000
Retrofit project acceptance according to ship class company		€ 300000
Equipment dismantling	1500 h	€ 45 000
Automation (electricity, power management)		€ 300000
Painting (including preparation)		€ 120000
Class supervision (depends on the chosen Lloyd BV)		€ 150000
Ship safety systems		€ 490000
Fuel Cell modular system 360kW	4x 90 kW	€450 000
H2 tanks, 220 kg	2x220 kg	€440 000
Battery	2x 160kWh	€240 000
Power management and AUX		€400 000
Electric motor	2x220 kW	€ 120 000
Total for FC/battery retrofit (41%)		€ 1640000
Total		€ 3985000
Replacement of diesel with LNG propulsion is evaluated a	€ 1200000	

Costs (TCO diesel/hydrogen) - 20 Buses

Capital expense	Units	Diesel bus capex (k€/bus)	Fuel cell bus capex (k€/bus)	Total FC project cost (k€)	Total funding gap (k€)
City bus 12 m	20	200	550	11 000	7 000
Total				11 070	7 070

TCO Parameters	Diezel €/km	FC €/km
Administration	0,12	0,12
Salaries	0,82	0,65
Fuel	0,46	0,54
Depreciation Costs	0,18	0,49
Maintenance	0,25	0,13
Overhaul	0,02	0,09
CO2 emissions	0,07	
Total:	1,92	2,01

Costs (TCO): Funding Gap/Opportunities

	Infrastructure (Capex & Opex)	FC buses	Retrofitting "Voyager" (CAPEX)	PM	Total*
Total cost	€7,02m	€11,1m	€3,99m	€384k	€22,5m
Funding gap	€7,02m	€7,07m	€3,99m	€384k	€18,5m

☐ Potential Funding Sources:

- National: Operational Programs; Recovery & Resilience Plan; eventually IPCEI; private
- European: Horizon Europe (CH JU Inland shipping) Interreg; TEN-T;

Modernization Fund; CEF; EIB; innovation Fund;

Main Difficulties and Barriers

- To find information about companies producers of components, systems, services
- To realize a contact with such companies
- To find information about prices
- Lack of information about legislative, administrative and safety issues (lack of existing issues)
- Lack of information about homologation and certification (for retro fit)

Thanks to Elementenergy and Trezors for covering as much as possible this information gap

Project Outcomes

- □ Realization of the first in Bulgaria (together with PDA for Sofia Municipality)

 Project with detailed plan for large scale hydrogen deployment for transport applications:
 - Development of appropriate Business Model
 - Development of Work Plan
 - Identification of technological approaches
 - Identification and preliminary contacts with stakeholders through the value chain: buses (Caetano, Wrightbus, Solaris); hydrogen system (Ballard, Worthington)
 - Identification of funding opportunities
- Attraction and Involvement of Bulgarian stakeholders: Zagora Holding (retrofit system integration), ALMOT LTD (production of electric motors); Association of Danube River Municipalities; Ruse Municipal Transport, Bulgarian River Shipping J.S.Co; Ruse University, BGH2A

Project Impact

☐ READINESS to enter in Consortium for large scale demonstration of hydrogen fuel cell propelled inland waterway vessels (FCH JU).

Activation of Ruse Municipality:

- 40 and more hydrogen buses (new Depot for 100 buses)
- To coordinate Danube transport Hydrogen Valley (380 km longitude)
- ☐ Deep involvement of Bulgarian River Shipping J.S.Co:
 - 5 Danube logistic points : 2 bridges, 3 ferries
 - Combined transport: river-rail-sea
 - Land for PVs

☐ Strengthening the Consortium

- Establishment of SME for integration of Battery/FC hybrid system (Stara Zagora)
- Involvement of BG ship company for retro fit design
- Involvement of BG ship yard for retro fit

Project Impact

☐ CHA Project pipeline – 2 transport projects:

 Bulgarian Hydrogen for Buses (BGH2B) – applicant BGH2A

Item/unit	Sofia	Burga	Stara	Ruse	Total
		S	Zagora		
Bus/No	65	20	20	35	140
Trolleybus/H2	40	8	8	8	68
range extender					
Electrolyzer MW	6,3	2	2	3, 3	13,6
H2 t/y	747	224	224	368	1563

Project Impact

☐ CHA Project pipeline – 2 transport projects:

 GH4T - FC/Battery Systems for Transport – applicant Holding Zagora

Period	2022-	2027-	
	2027	2030	
Retrofit trolleys	70	80	
Retro fit City bus	50	190	
Garbage Trucks	22	50	
Heavy duty (incl.	2	8	
ships)			
CAPEX (total)	56508 k€		
CAPEX Finding Gap	29,3%		

Acknowledgements

PROJECT DEVELOPMENT ASSISTANCE FOR REGIONS

Ruse Consortium would like to thank:

☐ Elementenergy and Trezors for the dedication in their assistance

- ☐ and personally to:
- Hannah Bryson-Jones and Mike Dolman from Elemmentenergy
- Aivars Starikovs and Dainis Boss from Trezors
 for the personal efforts which were beyond their contract obligations.

THANK YOU