The ELECTROLIFE project aims to be a booster to enable the use of green hydrogen technologies to support decarbonization of European global industry. Currently, electrolysis technologies suffer from limitations in terms of cost, efficiency, stability, scalability, and recyclability. This is mainly due to the lack of understanding and identification of electrolyzer degradation mechanisms and improvement of current cell performance. ELECTROLIFE aims to increase the efficiency performance of electrolyzers by reducing the use of critical materials and extending the useful life of these systems. These goals will be achieved through test campaigns to identify multiple degradation mechanisms on multiple scales, multiphysics simulations with superimposed degradation mechanisms, prototyping of cells and stack components, and construction of dedicated test benches. The type of testing will be harmonized through dedicated protocols, and test results will be processed and made available through dedicated online data centers. In addition, diagnostic and stack health models will be developed to reduce the degradation rate, enabling the implementation of predictive control systems. ELECTROLIFE will demonstrate the implementation of durable stacks using relevant experimental methods through the production of high-performance technologies with minimal CRM content, enabling scalability and recyclability. ELECTROLIFE is expected to reduce the average cost of ownership of the electrolyzers by 40% for AEL and PEMEL and by 70% for AEMEL and SOEL. These achievements will enable utilization of the innovations developed by ELECTROLIFE, reaching 15% of European production capacity (corresponding to about +3GW/a - IEA 2022).
- Reference
- 101137802
- Project duration
- 1 Jan 2024 - 31 Dec 2028
- Project locations
- Italy
- Overall budget
- €9 995 705
- EU contribution
- €9 995 705100% of the overall budget
- Project website
- Cordis
Stakeholders
Coordinators
POLITECNICO DI TORINO
- Address
- Italy